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Abstract: In this paper, we propose a new approach to study the BPS dynamics in

N = 4 supersymmetric U(N) Yang-Mills theory on R × S3, in order to better understand

the emergence of gravity in the gauge theory. Our approach is based on supersymmetric,

space-filling Q-balls with R-charge, which we call R-balls. The usual collective coordinate

method for non-topological scalar solitons is applied to quantize the half and quarter BPS

R-balls. In each case, a different quantization method is also applied to confirm the results

from the collective coordinate quantization. For finite N , the half BPS R-balls with a

U(1) R-charge have a moduli space which, upon quantization, results in the states of a

quantum Hall droplet with filling factor ν = 1. These states are known to correspond

to the “sources” in the Lin-Lunin-Maldacena geometries in IIB supergravity. For large

N , we find a new class of quarter BPS R-balls with a non-commutativity parameter.

Quantization on the moduli space of such R-balls gives rise to a non-commutative Chern-

Simons matrix mechanics, which is known to describe a fractional quantum Hall system.

In view of AdS/CFT holography, this demonstrates a profound connection of emergent

quantum gravity with non-commutative geometry, of which the quantum Hall effect is a

special case.
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1. Introduction

The AdS/CFT correspondence [1] is a gravity/gauge theory duality, according to which

gravity is an emergent phenomenon in the dual gauge field theory. In the most well-

understood case, the classical AdS5 × S5 geometry is conjectured to be encoded in the

strong ’t Hooft coupling regime of the N = 4 supersymmetric Yang-Mills (SYM) theory

on R×S3 with gauge group U(N). A thorough understanding of how this correspondence

happens remains a challenge.

In the last two years, there has been encouraging progress. In ref. [2], Berenstein

first proposed to consider a decoupled limit which singles out the half BPS sector in the

N = 4 SYM. As a model for the dynamics of the half BPS states, he studied the gauged
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mechanics of a holomorphic normal matrix, which was shown to be equivalent to a one

dimensional free fermion system in phase space. (Similar results had been obtained in a

complex matrix model [3].) The 1-d free fermion system can be mapped to an integer

quantum Hall (IQH) droplet in two dimensions. An amazing and profound connection of

the IQH droplet picture with type IIB geometries on the gravity side was subsequently

revealed in a seminar paper by Lin, Lunin and Maldacena (LLM) [4]. By solving the

equations of motion in IIB supergravity in ten dimensions, they have been able to obtain

all non-singular half BPS type IIB geometries with isometry R × SO(4) × SO(4), which

turn out to be completely determined by the boundary value of a single real function z

on a plane. The boundary value of z can be only ±1/2, which may be interpreted as the

distributions of two types of point charge sources on the boundary plane. Either region

with z = 1/2 or z = −1/2 can be viewed as a droplet of an incompressible fluid, like the

IQH fluid. The simplest case is the familiar geometry AdS5 × S5, which corresponds to

a circular droplet on the boundary plane. In this way, one is tempted to associate the

half BPS geometries in IIB supergravity with the half BPS states in N = 4 SYM, by

comparing the boundary IQH droplets in LLM’s half BPS geometry to those in the phase

space of Berenstein fermions. This comparison is justified only when one can make sense to

Berenstein fermions in the half BPS sectors in N = 4 SYM, not merely in a plausible model.

Attempts to substantiate this comparison have been made in several recent papers [5, 6]

with various degrees of success. (For the recent generalization of gauged matrix mechanics

to 1/4 and 1/8 BPS states in N = 4 SYM, see [7].)

In this paper we will directly attack the problem of how to see the Berenstein fermions

emerging in the N = 4 SYM by examining the BPS scalar field backgrounds. Our motiva-

tion came from the recognition that the emergence of gravity in SYM, as the correspondence

between Berenstein and LLM fermions should imply, actually indicates the background in-

dependence on both sides of the holographic duality. To test the background independence,

it is certainly desirable to have a systematic approach for finding candidate states on the

gauge theory side for possible (classical or quantum) geometries on the gravity side. The

simplest candidate states in SYM are the quantum BPS states with sufficiently large R-

charge. For their explicit construction, we propose a new approach, which starts with

constructing classical BPS backgrounds in SYM, namely solutions to the equations of mo-

tion that saturate the BPS bound and maintain a fraction of supersymmetry. The BPS

properties are required again because the AdS/CFT duality is a strong-weak coupling du-

ality; to check it one needs to be able to interpolate between the weak and strong couplings,

and a fraction of unbroken supersymmetry might allow one to do so. The classical BPS

backgrounds with given conserved charges usually have a moduli space for their collective

coordinates. We suggest to do quantization on the moduli space of collective coordinates

and expect that at least part of the resulting quantum states are BPS protected candidate

states that we are looking for.

We restrict ourselves in this paper to scalar backgrounds, which can be viewed as Bose-

Einstein condensates (BEC). It has been an old folklore in theoretical physics community

that classical geometry, in a certain sense, can be viewed as a sort of BEC. So we think

it natural to relate the geometric backgrounds in gravity to the scalar backgrounds in the
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SYM dual. For N = 4 SYM on R × S3, the classical scalar vacuum is unique because of

the conformal coupling to the curvature of S3, so the only available BEC-like objects are

space-filling Q-balls [8] with conserved R-charge; we call them simply R-balls. The above

considerations led us to examine the R-ball solutions that preserve 1/2, 1/4 or even less

supersymmetry. To formulate the R-ball approach in this paper, we aim at 1) formulating

the general conditions for BPS backgrounds in SYM; 2) finding explicitly classical BPS

R-balls, particularly new solutions corresponding to non-commutative geometry in the

large N limit; 3) carrying out collective-coordinate quantization on the moduli space of

certain BPS R-balls; 4) showing the emergence of the known IQH droplet of fermions in

a certain sector of half BPS R-ball configurations; and 5) finally showing that the new

non-commutative BPS R-balls, upon quantization, lead to fractional quantum Hall (FQH)

states, thus lending support to our previous argument [9] for the possible appearances of

FQH-like states on the gravity side.

The success in carrying out the above steps 1)–3) will lay down the foundation for

a general framework for finding classical BPS backgrounds in N = 4 SYM on R × S3,

and for constructing the quantum BPS states living on their moduli space (with given

conserved charges), particularly in the large N limit. It is expected that the distinctive

features due to the fact that the conformal field theory is defined on a compact space S3

will play a decisive role in these discussions. The above points 4) and 5) will dwell on

the relevance of the IQH and FQH states in the context of the holographic gravity/gauge

duality. It has been noticed in the literature that the many-fermion state in phase space

looks like an IQH droplet. Despite this, there is a crucial difference between the two,

since the IQH droplet pre-requires the presence of the Landau levels and the projection

to the lowest Landau level, while the former does not. If indeed it makes sense to talk

about “Landau levels”, then new states other than the IQH droplet can emerge due to the

inclusion of interactions, giving rise to new candidates for non-perturbative states on the

gravity side. The authors of the present paper have put forward arguments from the gravity

side supporting the emergence of FQH-like states [9]. The essence of the arguments was

the following: The interactions between the giant graviton probes in the LLM geometry

background are shown to be repulsive; if the interactions can be extrapolated to finite

density, then the giant gravitons in the LLM geometry at right densities can condense

into new incompressible QH fluids with fractional filling factors. More concretely, the

dynamics of giant graviton probes is first shown [9] to be described by a non-commutative

Chern-Simons gauge theory [10]. Then it was further reduced to a non-commutative Chern-

Simons matrix mechanics (NCCSMM) previously proposed in ref. [11], and its spectrum

was shown to contain not only the IQH but also the FQH states. This has inspired us

to try to find the FQH-like states on the gauge theory side. But this did not seem easy

in the matrix model approach [2, 12]. (For other effort in studying the QHE in SYM,

see refs. [13, 14].) Actually this was our main motivation to look for a new approach to

the BPS dynamics in N = 4 SYM. Indeed as shown below, new non-commutative BPS

backgrounds can be found in our new framework in the large N limit, confirming the

relevance of the FQHE and, more generally, of the non-commutative geometry to emergent

gravity in SYM.
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This paper is organized as follows. We start with a brief review of supersymmetry

transformations in N = 4 SYM on R × S3 in section 2, to set up the notations and to

formulate the conditions for unbroken supersymmetry. In section 3, we present some vari-

ational theorems for the classical BPS R-balls, i.e. classical scalar configurations of the

lowest energy in the sector with given R-charges and leaving part of the supersymmetry

unbroken. Then in section 4, we proceed to construct the explicit solutions for classical

R-balls, which include the commutative half BPS configurations known in the literature.

In particular, we find that in the large N limit there may exist non-commutative solutions,

which solve the Gauss’s constraints exactly and satisfy the BPS bound with an error of

order O(1/N). Thus the moduli space of the BPS R-balls is enhanced in the large N

limit. We demonstrate this by presenting a new family of quarter BPS R-balls that involve

a non-commutativity parameter between scalar and pseudo-scalar in pairs. In section 5,

we discuss first in great detail the collective coordinate (or moduli space) quantization of

the commutative half BPS R-balls. In particular, besides demonstrating how our new ap-

proach reproduces the known results in the half BSP sector, we show that the quantization

naturally leads to the “Landau-level problem”, so that it makes sense to look for more

exotic FQH (or FQH-like) states in more complicated sectors. Indeed in section 6 we are

able to show that the quantization of the non-commutative quarter BPS R-balls leads to

an NCCSMM model for infinite-dimensional matrices, whose Hilbert space indeed contains

FQH-like states. Section 7 is devoted to summary and discussions. Finally, in appendix of

this paper, we derive the N = 4 supersymmetry algebra on R×S3 and present the formula

for the BPS bound, which assures that for our R-balls, the BPS bound is saturated by

their R-charge, exactly corresponding to the BPS bound in the gravity dual.

2. N = 4 SYM on R × S3

It is known that the N = 4 supersymmetric vector multiplet in four dimensions can couple

to a background metric in a Weyl invariant manner classically [15]. However, in quantum

theory there exists Weyl anomaly except for certain symmetric backgrounds, such as R ×
S3 [16]. Accordingly, the N = 4 SYM on R×S3 is a well-defined quantum conformal field

theory; the corresponding Lagrangian in N = 1 language reads

L = −1

4
Tr(FµνFµν) +

1

2
Tr(DµXiD

µXi + DµYiD
µY i) − V (X,Y )

+
i

2
Tr(ψ̄γaeµ

aDµψ) − ig

2
Tr{ψ̄(αi[Xi, ψ] + γ5βj [Yj , ψ])}. (2.1)

Here g is the gauge coupling; the potential of scalars is given by

V (X,Y ) =
1

2R2
Tr(XiX

i + YjY
j) − g2

4
Tr([Xi,Xj ]

2 + [Yi, Yj ]
2 + 2[Xi, Yj ]

2) (2.2)

with R the radius of S3; X and Y denote scalar and pseudo-scalar fields respectively.

αi, βj (i, j = 1, 2, 3) are 4 × 4 real anti-symmetric matrices satisfying the algebraic rela-

tions [17]

[αi, αj ] = −2εijkαk, [βi, βj ] = −2εijkβk,

{αi, αj} = {βi, βj} = −2δij , [αi, βj ] = 0. (2.3)
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All gamma matrices are defined in a local Lorentz frame eµ
a and Dµ is the covariant deriva-

tive:

Dµψ = ∇µψ − ig[Aµ, ψ] = ∂µψ + Ωµψ − ig[Aµ, ψ], (2.4)

where Ωµ = 1
4Ωab

µ γab is the spin connection with Ωab the connection 1-form with γab the

generators of local Lorentz transformations. Two remarks are deserved here. First, it is the

cylinder R×S3, instead of Minkowski space M4, that is the global conformal boundary of

AdS5. Second, because of the cylindrical structure of R × S3, the natural spin connection

does not involve the temporal direction, implying ∇0 = ∂0; as a result, only local SO(3)

transformations, instead of local SO(3, 1) transformations, act upon the gaugino field ψ;

namely, there are no local boosts. For this reason, a global and Majorana formalism for ψ

and γa can be defined on R × S3 similar to that in flat space. More subtleties of the spin

structure on R × S3 will be explored in the following discussion of global supersymmetry.

The action integral of the Lagrangian (2.1) over R × S3 possesses an N = 4 su-

perconformal symmetry because of the existence of four conformal Killing spinors εA for

A = 1, 2, 3, 4. We will first follow the analysis in refs. [19, 18], which dealt with the confor-

mal Killing spinors on R×S3 by descending the Killing spinors on AdS5. In this formalism,

the conformal Killing spinor equations are written as

∂0εA =
i

2R
Γ0εA, ∇mεA =

i

2R
ΓmΓ5εA , (2.5)

where m = 1, 2, 3 labels the directions in a local orthonormal frame on S3, and the five

upper-cased gamma matrices generate the Clifford algebra of five-dimensional Minkowski

space M5, which form a local frame on AdS5. To the best, there are four linear-independent

complex global sections in the spin bundle on R × S3 as the solutions to eq. (2.5) for each

A = 1, 2, 3, 4; therefore, there are at most 32 supercharges.

In addition to the above extrinsic formalism (descending from AdS5 in eq. (2.5)), there

is an intrinsic formalism for the spin structure on R × S3, by making use of Majorana

spinors, in which the gamma matrices are denoted with the lower case. In fact, the two

formalisms share the following feature: There is only one local SO(3) acting on the four-

component complex spinor εA. This implies that the four-component spinor εA in eq. (2.5)

as a representation of this local symmetry must be reducible. A natural reduction results

from the observation that [Γ0,ΓmΓ5] = 0. One can introduce a projection operator P =

(1 + iΓ0)/2 such that a “Γ0-chirality” is defined as follows: (for convenience, the subscript

A is omitted for a moment)

εL := Pε, εR := (1 − P)ε. (2.6)

Two Majorana spinors in the intrinsic spin structure can be constructed from εL or εR,

respectively, via the standard procedure that produces a Majorana spinor from a Weyl

spinor:

ζL = εL + Cε∗L, ζR = εL + Cε∗R, (2.7)
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where C is the conventional charge conjugation matrix. Note that the conformal Killing

spinor ε in the (extrinsic) AdS-descending spin structure does not admit any Majorana

condition.

With the above-mentioned clarification of the spin structure on R × S3, we can write

down the fermionic part of N = 4 superconformal transformation explicitly [18, 16]:

δL,RAµ = −iψ̄γµζL,R, δL,RXi = ψ̄αiζL,R, δL,RYj = iψ̄βjγ5ζL,R,

δL,Rψ =
1

2
γµνFµνζL,R − iγµ(αiDµXi + iγ5β

jDµYj)ζL,R

+
ig

2
εijk(αk[Xi,Xj ] + βk[Yi, Yj ])ζL,R + g[Xi, Yj]α

iβjγ5ζL,R,

− i

2
(αiXi − iγ5β

jYj)γ
µ∇µζL,R , (2.8)

where, as usual, γµ = γaeµ
a with eµ

a the local vierbein. As R is sent to infinity, both

the Lagrangian (2.1) and the superconformal transformation (2.8) reduce to those in M4.

Using the conformal Killing spinor equations (2.5), we have

γµ∇µζL =
2i

R
γ5γ

0ζL, γµ∇µζR = −2i

R
γ5γ

0ζR. (2.9)

Then one can directly check that the variation of the Lagrangian (2.1) is indeed a total

derivative. We will show in appendix that either ζL or ζR generates a super-isometry

algebra separately; together, they generate the entire superconformal algebra.

3. R-balls as classical BPS backgrounds

As mentioned in the introduction, recent progress in understanding emergent gravity in

AdS/SYM holography motivated us to look for scalar field configurations (representing a

sort of BEC) that preserve a fraction of supersymmetry. In this attempt, the old idea

of Coleman’s Q-balls [8] has attracted our attention. Initially, Q-balls are defined as non-

topological soliton solutions in complex scalar field theories in a four-dimensional flat space-

time. Their existence and classical stability hinge on the existence of a conserved charge,

Q, associated with a global U(1) symmetry: A Q-ball is the solution minimizing the en-

ergy in the sector with a fixed and sufficiently large Q-charge. The solutions constructed

in ref. [8] are spherically symmetric in space, and the nonzero Q-charge is generated by

rotating a static configuration in internal space. In our present case, we generalize Q-ball

to the compact space S3; this generalization allows the existence of space-filling Q-balls,

which is impossible in non-compact flat space. In N = 4 SYM, there are two important

complications for Q-balls. First, the pertinent global symmetry is SO(6) R-symmetry. The

corresponding Q-balls, which we call R-balls, carry a U(1) R-charge embedded in the non-

abelian SO(6). Different embedding yields a different type of R-balls. Second, the theory

has a color U(N) gauge symmetry, and the scalar fields also carry color degrees of freedom.

The Gauss’s law will severely constrain possible physical states after quantization. In this

section, we will formulate and analyze the conditions for the classical R-balls, namely so-

lutions to the equations of motion with energy saturated by the R-charge in a given sector

with fixed R-charge.
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3.1 Variational BPS bound

First we consider the variational aspects of the problem. As usual for classical backgrounds,

we set the gaugino field to zero: ψ = 0. Then the Hamiltonian reads:

H =

∫

S3

(

1

2
Tr

(

F 2
0i +

1

2
F 2

ij + DiφsDiφs + D0φsD0φs +
1

R2
φsφs

)

+ V4(φ)

)

, (3.1)

where {φs} = {Xa, Ya} (with s = 1, . . . , 6 and a = 1, 2, 3) are six scalar fields, transforming

as a vector under R-symmetry SO(6), while as adjoint representation under color U(N).

We note that all terms in eq. (3.1) are non-negative. To look for the Q-ball solutions, we

concentrate on the dynamics of the scalar fields. Thus we set Fµν = 0, (µ, ν = 0, 1, 2, 3),

putting the first two terms to zero. Because S3 is simply connected, it is possible to take

the spatial components of the gauge potential Ai = 0, while allowing A0 a function of time

only. In the following, we will adapt the BPS analysis to the global R-symmetry.

Let us focus on a sector of scalar configurations with a fixed U(1) R-charge:

Qr = Tr

∫

S3

(D0φs)rstφt, (3.2)

associated with a generator r in the so(6) Lie algebra (in the definition representation).

Note that as a six-by-six antisymmetric matrix, r = (rst) may be degenerate. If r is also

an orthogonal matrix in a linear subspace in which it is non-degenerate, then it is easy to

prove the following BPS-like inequality:

H ≥ 1

R

∣

∣

∣
Tr

∫

S3

(D0φs)rstφt

∣

∣

∣
=

|Qr|
R

. (3.3)

The energy H saturates the lower bound set by the charge Qr in (3.3) only when the

following three conditions are satisfied: First,

Diφs = 0, (i = 1, 2, 3), (3.4)

which makes the third term in eq. (3.1) vanish; and

[φs, φt] = 0, (3.5)

making the contribution of the quartic potential V4 vanish; and finally

D0φs = ±R−1rstφt, (3.6)

with φs having only non-zero components in the subspace in which the generator r is

non-degenerate. Since Ai = 0, (3.4) implies that the scalar fields φs are constant, i.e. the

lowest KK modes, on S3. The condition (3.6) means the time-dependent configuration

φs(t) rotates in internal space with a specific frequency, which generates the R-charge that

saturates the lower energy bound. Note that after imposing Fµν = 0 and eq. (3.4), the

Hamiltonian is reduced to a gauged mechanics:

H =

∫

S3

{

Tr

(

D0φsD0φs +
1

R2
φsφs

)

+ V4(φ)
}

. (3.7)
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The conditions (3.4) and (3.5), we will call the BPS conditions, are those to saturate the

energy bound in a given sector with definite R-charge.

In the next section, we will see that the configurations satisfying these BPS conditions

automatically preserve part of the N = 4 supersymmetry. Moreover, we note that when the

commutative condition (3.5) is satisfied, the Gauss’s law constraint is also automatically

satisfied, since the color charge density vanishes:

j0
U(N) = [D0φs, φs] = ±R−1rst[φt, φs] = 0. (3.8)

We will call the Q-ball solutions to the equations of motion obtained by solving the

BPS equations (3.6) and (3.5) as BPS R-balls. As zero-modes on S3, they are space-

filling. They form a decoupled sector in the limit when the radius R of S3 tends to zero.

(Note that non-space-filling R-ball configurations exist on S3, but they may not be BPS

in the sense that the energy is not saturated by their R-charge. This is in accordance

with ref. [20]. In the same limit, the gaugino and gluon backgrounds are decoupled from

this sector too [16].) Here we would like to warn that the BPS eq. (3.6) does not have a

topological origin, since the R-charge is not central in SUSY algebra. Incidentally, we also

make the remark that topological BPS solitons, such as ’t Hooft-Polyakov monopoles and

dyons with non-vanishing charges, do not exist on the compact S3. This is the main reason

why we turn our attention to non-topological R-balls in search of BEC-like backgrounds.

3.2 Group theory considerations

By an SO(6) rotation the antisymmetric r-matrix can always be put in the following canon-

ical form:

r → rcan =



















−r1

r1

−r2

r2

−r3

r3



















. (3.9)

where, since the r-matrix has to be an orthogonal matrix in a subspace in which it is

non-degenerate, there are only four choices for rα:

(r1, r2, r3) ∈ {(1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 1,−1)}. (3.10)

Any different choice of “gauge” is equivalent to them. For example, the second solution can

be chosen as well to be (1,−1, 0). However, since SO(6) can not be enlarged to be O(6) as

the global symmetry for the N = 4 SYM, the last two solutions are not equivalent. In the

next section we will see that, if the number of the non-vanishing rα’s is one, two or three,

respectively, the corresponding R-ball states maintain 1/2, 1/4 or 1/8 supersummetry.

3.3 Non-commutative solutions at large N

In color space, the scalar fields φs are N -by-N matrices. The commutative ansatz (3.5)

has been used before in ref. [2] to define a holomorphic normal matrix model. The above
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approach allows us to consider more sophisticated R-balls by going beyond this ansatz but

still having good control. The simplest case is that in the large N limit, the commutators

[φs, φt] are proportional to the unit matrix in color space:

[φs, φt] = i
θst

R4
, (3.11)

where the non-commutative (NC) parameters θst are anti-symmetric and of the dimension

of length squared. Other ansatz or conditions in the last subsections are unchanged, except

the Gauss’s law.

By taking derivative, one has

[D0φs, φt] + [φs,D0φt] = i
θ̇st

R4
. (3.12)

By eq. (3.6) and the antisymmetry of r, we get the equation of motion for the NC parameter:

Θ̇ = ±[r,Θ] , (3.13)

where Θ is the matrix (θst). For simplicity, in this paper we will only consider the case

with Θ̇ = 0, or equivalently [r,Θ] = 0. Accordingly, in the same basis for (3.9), Θ can be

put in a canonical form:

Θ → Θcan =



















−θ1

θ1

−θ2

θ2

−θ3

θ3



















. (3.14)

In addition, one must keep in mind that, for any rα = 0, the corresponding θα = 0.

Moreover, the Gauss’s law requires

[D0φs, φs] = ± i

R5
Tr6×6(rΘ) = 0; (3.15)

in the canonical forms for r and Θ, we have

3
∑

α=1

θαrα = 0. (3.16)

There are two straightforward implications: (i) If there is only one rα 6= 0, then the

deformation (3.11) with constant θ violates the Gauss’s law. (ii) If two rα 6= 0 and we

choose the gauge r1 = −r2 = 1, then θ1 = θ2 and θ3 = 0. In the second half of the next

section, we will look for R-balls in the case (ii).

The deformation (3.11) is self-consistent only if N → ∞. Then various sums over

colors in the Hamiltonian become divergent. To define a well-behaved large N limit, one
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needs to properly redefine the the trace, Tr, and the fields by rescaling them with some

negative powers of N . In fact, let us examine the relevant terms in H:

H = 2π2R3Tr

(

φ2
s

R2
− g2

4
[φs, φt]

2

)

, (3.17)

where the factor 2π2R3 is the volume of S3 with radius R. Now we perform the standard

large N trick, by redefining φs =
√

Nφ̃s, λ = g2N . Then we extract the scale from Θ,

write it as θ and identify the dilatation operator with

∆ =
R

2π2
H = NTr

(

θ

R2
ϕ2

s −
λ

4

(

θ

R2

)2

[ϕs, ϕt]
2

)

, (3.18)

where ϕs = R2φ̃s/
√

θ and the pre-factor N plays the role of ~
−1. The concrete color space

“renormalization” scheme will be specified for different choices of Θ. We will consider two

examples below.

First, if θ = |θ1| 6= 0 and θ2,3 = 0, then we set the following order estimation: Trϕ2
s ∼

O(N2) while [ϕs, ϕt] ∼ O(1), which is in consistence with (3.11). Then it is natural to take

N2θ/R2 fixed, written as c1; the dilatation operator becomes

∆ = N

(

c1
Tr

N2
(ϕ2

s) −
λc2

1

4

Tr

N4
([ϕs, ϕt]

2)

)

. (3.19)

Notably, the symbols Tr/N2 play the role of the regularized traces. Moreover, the ratio

of the quartic to the quadratic terms in eq. (3.19) is of order λc1N
−3. We define the ’t

Hooft coupling λ and c1 to be the physical parameters independent of the cutoff N , then

the quartic terms becomes irrelevant. Meanwhile, the BPS bound is again saturated.

For the second example, let us consider the case with θ1 = θ2 with absolute value θ and

θ3 = 0. The solution to eq. (3.11) has a direct product structure (see eqs. (4.11) and (4.17)

in next section), and two regulators N1 and N2 are needed such that N1N2 = N . Then the

order estimation is set to be Trϕ2
s ∼ O(N(N1 + N2)). In this case, the physical parameter

is given by c2 = N(N1 + N2)θ/R2 and the physical dilatation is

∆ = N

(

c2
Tr(ϕ2

s)

N(N1 + N2)
− λc2

2

4

Tr([ϕs, ϕt]
2)

N2(N1 + N2)2

)

. (3.20)

This time, Tr/N(N1 + N2) serve as the regularized trace; the ratio of the quartic to the

quadratic terms in eq. (3.20) is of order λc2/N(N1 + N2)
2 with c2 and λ to be fixed,

independent of N . Note that in both (3.19) and (3.20), one should not further absorb c1

and c2 into another redefinition of fields, because this would change the universality classes

of the model.

In summary, with the non-commutative ansatz (3.11), the BPS bound (3.3) is saturated

up to an error that vanishes in a large N limit. We will refer this type of configurations

as almost-BPS. Allowing us to see this new possibility is a significant advantage of our

approach.
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4. R-ball solutions with unbroken SUSY

With only bosonic backgrounds, unbroken supersymmetry requires δζψ = 0. In this section

we will find the BPS R-ball configurations that also preserve part of supersymmetry, i.e.

satisfy the conditions (from (2.8))

0 = δLψa = −iγ0(αiẊia + iγ5β
j Ẏja)ζL +

1

R
(αiXia − iγ5β

jYja)γ5γ
0ζL

+
ig

2
εijk(αk[Xi,Xj ]a + βk[Yi, Yj]a)ζL + g[Xi, Yj ]aα

iβjγ5ζL,

0 = δRψa = −iγ0(αiẊia + iγ5β
j Ẏja)ζR − 1

R
(αiXia − iγ5β

jYja)γ5γ
0ζR

+
ig

2
εijk(αk[Xi,Xj ]a + βk[Yi, Yj]a)ζR + g[Xi, Yj]aα

iβjγ5ζR, (4.1)

with ζL,R not all vanishing. Here a = 0, 1, 2, . . . , N2−1 are the indices of the adjoint U(N)

representation. A representation of the algebra (2.3) is chosen to be

α1 = iσ2 × σ1, α2 = −iσ2 × σ3, α3 = i12×2 × σ2,

β1 = −iσ1 × σ2, β2 = −iσ2 × 12×2, β3 = iσ3 × σ2. (4.2)

In this section, we will not only find classical solutions satisfying these conditions,

but also count the moduli of the solutions of a given type. A clear understanding of the

moduli of the solution space is crucial for the collective coordinate quantization we are

going to apply in the next section. This is because the moduli form the configuration space

of the collective coordinates for a given type of solutions, and the collective coordinate

quantization heavily exploits the knowledge of the moduli space. To avoid overcounting,

one needs to be careful: SO(6) inequivalent configurations may be gauge equivalent, since

the scalars carry both global SO(6) and local U(N) degrees of freedom, which may be

entangled in the moduli counting.

4.1 Commutative R-balls and their moduli

We first consider the commutative ansatz (3.5) with only r1 6= 0 and r2 = r3 = 0 in the

canonical form (3.9). In this case, we need to consider only one pair of scalar fields X = X1

and Y = Y1. Then the supersymmetry condition (4.1) reduces to two systems of linear

equations:


















Gaζ1 + (Ka − Fa)ζ4 = 0,

Gaζ2 − (Ka + Fa)ζ3 = 0,

(Ka + Fa)ζ2 + Gaζ3 = 0,

(Ka − Fa)ζ1 − Gaζ4 = 0,

and



















Gaζ̃1 + (K̃a − F̃a)ζ̃4 = 0,

Gaζ̃2 − (K̃a + F̃a)ζ̃3 = 0,

(K̃a + F̃a)ζ̃2 + Gaζ̃3 = 0,

(K̃a − F̃a)ζ̃1 − Gaζ̃4 = 0,

(4.3)

where ζA, ζ̃A (A = 1, 2, 3, 4) are the “left” and “right” Majorana conformal Killing spinors

and

Ga = gγ5[X,Y ]a, Ka = −iγ0Ẋa + γ5γ
0Xa/R, Fa = γ0γ5Ẏa − iγ0Ya/R,

K̃a = −iγ0Ẋa − γ5γ
0Xa/R, F̃a = γ0γ5Ẏa + iγ0Ya/R. (4.4)
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The vanishing determinant of each system leads to the conditions for unbroken supersym-

metry:
(

| − iŻa + R−1Za|2 −
(g

2
[Z,Z†]a

)2
)(

|iŻa + R−1Za|2 −
(g

2
[Z,Z†]a

)2
)

= 0, (4.5)

with Z = X + iY . It is easy to see that when [X,Y ] = 0, i.e. [Z,Z†] = 0, the above

equations are reduced to the BPS condition (3.6) in the A0 = 0 gauge. The latter is easily

solved, resulting in

Z = e±it/RA , (4.6)

with A any N × N time-independent normal matrices: [A,A†] = 0. Inserting the solu-

tions (4.6) back into eq. (4.3), it is easy to verify that there are 16 supercharges. Hence

the solutions (4.6) are 1/2-BPS backgrounds.

Other examples can be worked too. It can be verified that if the number of non-zero

rα’s in the canonical form (3.9) is γ, then the fraction of unbroken supersymmetry is 1/2γ .

An important question is how many commutative BPS R-balls there are. This is the

problem of counting the moduli of such solutions, which we will address here.

With the canonical form (3.9) of r, one may define complex scalars as Zα = φ2α−1+iφ2α

(α = 1, 2, 3). Then the equations (3.4), (3.6) and (3.5) that completely determine the

commutative BPS R-balls can be recast into the form:

Żα = i
rα

R
Zα, [Zα, Zβ] = [Zα, Z†

β] = 0. (4.7)

The first equation can be solved by Zα = Aαeirαt/R with Aα time-independent N -by-N

matrices. The second equation indicates that Aα can be put in the form

Aα = U †aαU (4.8)

with aα (the eigenvalue matrix) diagonal: aα = diag(aα,1, aα,2, . . . , aα,N ), and U unitary.

Since all diagonal U ’s give rise to the same Aα when aα is diagonal, the solution space for

a particular R-charge generator r is given by

Mr,N = {(aα, U)} = CγN × U(N)/U(1)N . (4.9)

(recall that γ is the number of non-zero rα.) Furthermore, recall the BPS bound (3.3)

Qr = ± 1

2π2R

∫

S3

∑

α

Tr(Z†
αZα) = ±R2

∑

α,i

|aα,i|2 , (4.10)

where we have absorbed a volume factor 2π2 into the R-charge. Thus, an R-charge sector is

a class of R-ball solutions with the same R-charge Qr associated with generator r. Once the

R-charge generator is specified, the moduli space Mr,N is divided into different R-charge

sectors, and in each sector the value of the dilatation ∆ defined by eq. (3.18) is fixed by

the BPS condition ∆ = Qr.

As an example, for the 1/2 BPS R-charge sector with r1 = 1, r2 = r3 = 0, the R-charge

Q is given by Q = R2
∑

i |ai|2. Similarly, each commutative 1/2γ BPS R-charge sector with

a canonical r defines a sphere S2γN−1 in the eigenvalue space R2γN .
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4.2 Non-commutative R-balls and their moduli

Now we consider the non-commutative ansatz (3.11), which leads to new solutions in large

N . We have shown that for a single non-vanishing complex scalar Z, the non-commutative,

almost-BPS background violates the Gauss’s law (3.15), since [Ż, Z†] + [Ż†, Z] 6= 0. So we

need, at least, to turn on two complex scalars: Z1 = X1 + iY1, Z2 = X2 + iY2. Based on

the discussions in the previous section, we should pick r1 = 1 and r2 = −1 for the R-charge

generator. With this choice we have the solutions

Z1 =
1

R2
eit/RA1, Z2 =

1

R2
e−it/RA2, (4.11)

where the time-independent matrices A1 and A2 obey a two-dimensional Heisenberg alge-

bra:

[A1, A
†
1] = 2θ1, [A2, A

†
2] = 2θ2,

[A1, A2] = [A1, A
†
2] = [A2, A

†
1] = [A†

1, A
†
2] = 0, (4.12)

with θ1 = θ2, |θ1| = θ. The matrices A1 and A2 span two orthogonal non-commutative

planes and the Gauss’s law constraint is satisfied because θ1 = θ2.

Now let us count the number of unbroken supersymmetries via solving the supersym-

metry variation condition (4.1). In this case, this condition reduces to:



















(G11 − G22)aζ1 − (K2 + F2)aζ3 + (K1 − F1)aζ4 = 0,

−(G11 − G22)aζ2 + (K1 + F1)aζ3 + (K2 − F2)aζ4 = 0,

(K2 + F2)aζ1 − (K1 + F1)aζ2 − (G11 + G22)aζ3 = 0,

−(K1 − F1)aζ1 − (K2 − F2)aζ2 + (G11 + G22)aζ4 = 0,

(4.13)

in which

Gij = gγ5[Xi, Yj], Ki = −iγ0Ẋi + γ5γ
0Xi/R, Fi = γ0γ5Ẏi − iγ0Yi/R (4.14)

for i, j = 1, 2, with color indices suppressed. Since the solution (4.11) and the commutation

relation (4.12) lead to

G11 − G22 = K1 + F1 = K2 − F2 = 0, (4.15)

the solution of (4.13) is ζ1,3,4 = 0, leaving ζ2 the only surviving Killing spinor. Similar

result holds for ζ̃A. So among all 32 components of Killing spinors, only a quarter of

them can be nonzero and linearly independent. Therefore, the classical non-commutative

configurations (4.11) with (4.12) preserve eight supersymmetries. This class of 1/4 BPS

backgrounds has not been discovered before in the literature.

The moduli space, Mr,Θ, for this class of non-commutative R-balls is qualitatively dif-

ferent from that of the commutative BPS R-balls. To start, we rewrite the non-commutative

ansatz (3.11) in the exponential form:

exp(iφsu
s) exp(iφtv

t) = e−θstusvt/R4

exp(iφtv
t) exp(iφsu

s) , (4.16)

– 13 –



J
H
E
P
0
6
(
2
0
0
6
)
0
6
0

where us and vt are two vectors in R6. By the celebrated Stone-von Neumann theorem, any

solutions to (4.16) are unitarily equivalent. Then we focus on the case of (4.11). Because

r1 and r2 is now gauged to be 1 and −1, the sign of θ1 = θ2 matters; so there are actually

two different solutions (θ, θ) and (−θ,−θ), where θ by definition is non-negative. Without

losing of generality, we take (θ, θ). In this case,

Aα =
√

2θU †aαU, a1 = a × 1, a2 = 1× a , (4.17)

where a is a standard matrix representation in quantum mechanics

a =













0 1

0
√

2
. . .

√
3

. . .
. . .













(4.18)

and U is an infinite-dimensional unitary matrix. So Mr,Θ is the product of R+ = {
√

θ}
and an infinite special unitary group “SU(∞)”, loosely speaking. However, the difference

with the commutative half-BPS case is that only a U(2) subgroup in this SU(∞) will be

considered as dynamical variables, with the rest being gauge degrees of freedom. This U(2)

is generated by the Schwinger representation,

Lµ = a†α(σµ)αβaβ, (4.19)

with µ = 0, 1, 2, 3, σ0 = 1. It is easy to show L1,2 do not contribute to the energy in (3.20).

According to the above-mentioned analysis, we reparameterize this type of R-balls as

Aα =
√

2θeiϕαV †aαV, α = 1, 2, (4.20)

with V ∈ SU(∞)/U(2). L0 generates the translation in the direction of ϕ1 + ϕ2 while L3

generates the translation in the direction of ϕ1 − ϕ2. And in the later treatment,
√

θ, ϕα

are dynamical while V plays the role of gauge degrees of freedom.

Now let us regularize a1 and a2 by truncating (4.18) to estimate the N -dependence of

the R-charge. The first factor in the direct product (4.17) is regularized by the upper-left

N1-by-N1 block, while the second factor by the upper-left N2-by-N2 block. Accordingly,

we have N = N1N2. The R-charge calculated from eq. (3.20) (with the quartic term safely

thrown away) is given by

Q = Nc2 = N2(N1 + N2)
θ

R2
. (4.21)

The prefactor N is familiar in any quadratic quantities in large N field theories. Now the

R-ball sector is specified by the “renormalized R-charge” c2, instead of the bare ratio θ/R2.

In the later treatment, we will omit the prefactor N and concentrate on the finite part of

the physical quantities like energy and charge.
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5. Quantization of the commutative half BPS sector

The classical R-balls have continuous values for the U(1) R-charge. It is necessary to quan-

tize the R-balls in order to get a discrete spectrum for the R-charge. In this section, we

will quantize the R-balls by both collective coordinate quantization [22 – 24] and canonical

quantization. In the commutative half BPS sector we will show that both quantization re-

produce the previous results obtained by the matrix model approach [2], but our treatment

will shed new light on several important aspects of physics. In particular, we can explicitly

exhibit the origin of the Landau levels in the present text, so as to make the connection of

the BPS dynamics with the quantum Hall effect meaningful and substantial.

5.1 Collective coordinate quantization

We have seen the time-independent matrix A in our solution (4.6) can be put in the form

A = U †aU, (5.1)

where a = diag(a1, a2, . . . , aN ) and U ∈ U(N)/U(1)N . Consequently, the collective coor-

dinate space for solution (4.6) is identified to be

Mr,N =
(

CN/SN

)

×
(

U(N)/U(1)N
)

. (5.2)

Here SN is the symmetric group of degree N . As we will see, the collective coordinate

quantization on this moduli space will lead to a Hilbert space including non-BPS quantum

states, while the quantum BPS states form only a subspace.

The collective coordinate quantization was originally developed for (topological and

non-topological) solitons in scalar field theory. Classically the internal conserved observ-

ables of the solitons are generated by rotating the collective coordinates of a static solution

in internal space. So to quantize the value of the internal observables, naturally one needs

to turn the collective coordinates into quantum dynamical variables. In the present case,

we promote the variables a and U in eq. (5.1) to dynamical variables:

a → a(t), U → U(t). (5.3)

(Alternatively, we may absorb the exponential factor e−it/R into the diagonal part with

a(t) → a(t)eit/R. We will not use this convention however.) Recall that eq. (5.1) is in the

A0 = 0 gauge. There is a residue global U(N) symmetry in this gauge, and because of the

original color gauge symmetry in the SYM we need to impose the Gauss’s law constraints.

Substituting eq. (5.1) with (5.3) into the original Lagrangian of SYM, we get the

Lagrangian for the collective coordinates a(t), U(t):

L = Tr

{

ȧȧ† − i

R
(a†ȧ − aȧ†) − 1

2
[a, ω][a†, ω]

}

(5.4)

where ω := i
√

2U̇U †, ω† = ω. Because U ∈ U(N)/U(1)N , ωi
i = 0 for i = 1, 2, . . . , N . In

terms of the matrix elements, the Lagrangian (5.4) reads

L =
N

∑

i=1

(

|ȧi|2 −
i

R
(a∗i ȧi − aiȧ

∗
i ) +

1

2

∑

i6=j

|ai − aj |2ωi
jω

j
i

)

. (5.5)
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The first two terms in eq. (5.5) define a standard Landau problem for N particles, with

cyclotron frequency 1/R. The origin of the “magnetic field” is due to the rotation e−it/R

in the R-ball solution that generates R-charge. The last term is in the standard form for

a top rotating in a homogeneous space with symmetry G, with IAB the inertia tensor and

ωA the angular velocities taking values in the Lie algebra of G. In the present case, the

group G is U(N). The inertia tensor is diagonal with element Iii
jj given by |ai − aj|2. The

canonical momenta are

J i
j =

∂L

∂ωj
i

=

{

|ai − aj |2ωi
j, i 6= j;

0, i = j

}

, (5.6)

with the Poisson structure

{J i
j , J

k
l }P.B. = δi

lJ
k
j − δk

j J i
l . (5.7)

Observe that

ai 6= aj , ∀i 6= j ⇐⇒ det

(

∂2L

∂ωi
j∂ωk

l

)

= |∆(a)|2 6= 0 , (5.8)

where ∆(a) is the van DeMonde determinant for (a1, a2, . . . , aN ):

∆(a) =
∏

i<j

(ai − aj). (5.9)

So the Hessian for (5.6) is nonsingular and, therefore, the Hamiltonian is well-defined only

in the subspace of moduli without coinciding eigenvalues. We will do canonical quantization

on this subspace with the Hamiltonian

H = H0 +
∑

i6=j

J i
jJ

j
i

2|ai − aj |2
, (5.10)

where

H0 =

N
∑

i=1

(

pi +
ia∗i
R

)(

p∗i −
iai

R

)

, (5.11)

and the canonical momenta are given by pi = ȧ∗i −ia∗i /R, p∗i = ȧi+iai/R. The Hamiltonian

in (5.10) is a generalized Calogero-Sutherland model for U(N)-spin [25] coupled to a con-

stant magnetic field. By “generalized”, we mean that the variables ai are complex instead

of real numbers. This difference will dramatically change the physics at the quantum level.

To quantize the system, we first promote the Poisson brackets (5.7) to the commutation

relations for su(N) Lie algebra:

[J i
j , J

k
l ] = i(δi

lJ
k
j − δk

j J i
l ) . (5.12)

Classically the Gauss’s law [Z†,D0Z] + [Z,D0Z
†] = 0 on the moduli space reads

[a†, [a, ω]] + [a, [a†, ω]] = 0, (5.13)
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or equivalently, in terms of the U(N) angular momenta,

J i
j = 0. (5.14)

At the quantum level, the Gauss’s law (5.14) is promoted to the constraints on the physical

states:

J i
j |phys〉 = 0. (5.15)

To see the meaning of the constraints, we introduce a coordinate representation:

|phys〉 → ψ(a,U). Then J i
j are represented by the right-invariant vector fields on the

U(N) group manifold that generate left translations:

J i
j = −iU i

k

∂

∂U j
k

;
(

1 + εi
jJ

j
i

)

f(U) = f ((1 − iε)U) . (5.16)

The Lie algebra relation (5.12) is readily to verify. Moreover, it is obvious that J i
i ψ = 0.

The Gauss’s law (5.15) is equivalent to ψ(a,U) = ψ(a). Namely, the wavefunction of

physical states are independent of the coordinates U . So we will consider only physical

states in the form ψ(a). Thus the physical degrees of freedom are reduced to the diagonal

elements ai, giving rise to the many-body interpretation of the quantum states. As we

have seen from (5.8), a Hamiltonian formalism is well defined only on a subspace of the

moduli with ai all unequal. The reduced moduli space for ai’s is then {CN − D}/SN ,

where D is the set of points in CN with coinciding coordinates. The fundamental group of

this reduced moduli space is known to be the braid group of N -particles that classifies the

quantum statistics in two dimensions [26]. This is the origin of the emergence of non-trivial

statistics, including fermions, after quantizing scalar (bosonic) field configurations.

Finally, we consider the Hamiltonian in the subspace of physical states. There is a

nontrivial measure in defining the inner product in the physical Hilbert space. This measure

can be viewed as the Faddeev-Popov measure due to gauge fixing. In fact, in the space

of all normal matrices, the measure is dAdA† = dµ(U)dada†|∆(a)|2, where dµ(U) is the

descended Haar measure at point U on the coset space U(N)/U(1)N . By integrating out

the unphysical “angular part” dµ(U), the inner product of two physical states is given by

〈φ|ψ〉 =

∫

∏

i

daida†i |∆(a)|2φ(a)∗ψ(a). (5.17)

Then the Hamiltonian acting on the wavefunction ψ is identified with H0 in (5.11) with

the measure factor taking into account:

H =

N
∑

i=1

1

|∆|2
(

pi +
ia∗i
R

)

|∆|2
(

p†i −
iai

R

)

, (5.18)

in which

pi = −i
∂

∂ai
, p†i = −i

∂

∂a∗i
. (5.19)
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A statistical interaction appears in H because of the nontrivial measure factor |∆(a)|2.
Similar to the one-dimensional case, this statistical interaction can be absorbed by a re-

definition of wavefunction:

ψ(a) → Ψ(a) := ∆(a)ψ(a) . (5.20)

The Hamiltonian acting on the wavefunction Ψ is given by

H =

N
∑

i=1

1

∆∗

(

pi +
ia∗i
R

)

∆∗∆

(

p†i −
iai

R

)

1

∆
=

N
∑

i=1

(

pi +
ia∗i
R

)(

p†i −
iai

R

)

, (5.21)

which has the same form of H0 due to the facts that [p†i ,∆] = 0, [pi,∆
∗] = 0. In deriving

the second equality, we have explored the holomorphy of the factor ∆. The transforma-

tion (5.20) has the effect of attaching a statistical flux [27] to each particle in two dimen-

sions, to turn the original bosons into fermions [26]. So the Hamiltonian (5.21) describes

a free fermion system in a magnetic field. (Note that the above treatment is a bit more

sophisticated than that of Berenstein’s hermitian matrix toy model [2], because our Z is

not hermitian.)

The ground states of the Hamiltonian (5.18) are determined by the following first-order

equations
(

∂

∂a∗i
+

ai

R

)

ψ = 0, i = 1, 2, . . . , N. (5.22)

For any i, the solution to eq. (5.22) is a lowest Landau level (LLL): φm(ai) = am
i e−|ai|

2

/
√

m!

for m = 0, 1, . . .; and the many-body ground states are the symmetrization of the LLL’s

for all i

ψG = CN

∑

sym

∏

i

φmi
(ai), (5.23)

where CN is the normalization factor. Accordingly, the ground states for (5.21) are given by

ΨG = ∆(a)ψG. (5.24)

Thus the quantum half BPS states are identified with the ground states, which are infinitely

degenerate. Excited states come from higher Landau levels, and generically are non-BPS.

(Though the many-body system is a free system, there are statistical correlations coming

from the measure.) The gap between the LLL and excited states is of order 1/R. So in

the small-R limit, the quantum states will be projected down to the LLL, i.e. the half BPS

sector.

5.2 Canonical quantization

In this subsection, we are going to show that a direct application of canonical quantization

to the matrix elements of Z for the commutative half BPS R-balls can reproduce the results

of collective coordinate quantization. Recall the classical system to be quantized:

Ż = iZ, [Z,Z†] = 0, (5.25)
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where we have set R = 1 so that all quantities are dimensionless. The canonical momenta

are identified to be P = Ż† for this first-order system. We promote each matrix element of

Z to an operator, and impose the canonical commutation relations [Zi
j , P

k
l ] = iδi

lδ
k
j . Using

the first equation in (5.25), we have

[Zi
j , Z

†k
l ] = −δi

lδ
k
j . (5.26)

The second equation in (5.25) now can not hold for operators; so we impose it as constraints

on physical states. More explicitly, we introduce

Li
j := Zi

kZ
†k
j − Zk

j Z†i
k . (5.27)

Note that they are automatically traceless:
∑

i L
i
i = 0. It is easy to check that they

generate the su(N) Lie algebra:

[Li
j , L

k
l ] = δk

j Li
l − δi

lL
k
j . (5.28)

In other words, Li
j provide the Schwinger oscillator representation of su(N). In this for-

malism, the second equation in (5.25) is promoted to the constraints

Li
j|phys〉 = 0, (5.29)

so the quantum states are SU(N) singlets. For these states, Gauss’s law

([Z, Ż†] + [Z†, Ż])|phys〉 = 0,

and the BPS conditions (∆−Q)|BPS〉 = 0 are automatically satisfied because of eqs. (5.25),

with

∆ = Q = TrZZ†. (5.30)

In this scheme, all the physical states saturate the BPS bound ∆=Q quantum-mechanically,

since we started with a first-order system, equivalent to a LLL system.

The wavefunction of quantum states can be defined in the coherent-state (complex

coordinate) representation by |phys〉 → Ψ(Z) and Z† → ∂/∂ZT . (Here the superscript T

stands for matrix transpose.) In fact, this is a Bargmann-Fock representation in the space

of holomorphic functions Ψ(Z) with measure dµ(Z,Z†) = e−TrZZ†
. Recall that Z∂/∂ZT

generates the left U(N) action on Z, while ZT∂/∂Z the right action:

Tr

(

εZ
∂

∂ZT

)

Ψ(Z) = Ψ((1 + ε)Z) − Ψ(Z), Tr

(

εZT ∂

∂Z

)

Ψ(Z) = Ψ(Z(1 + ε)) − Ψ(Z).

(5.31)

So Li
j generate similar transformations in SL(N,C) by Ψ(Z) → Ψ(gZg−1) in the complex

domain and the Gauss’s law dictates that

Ψ(gZg−1) = Ψ(Z), ∀g ∈ SL(N,C). (5.32)

Note that this SL(N,C) is not a symmetry on the Hilbert space, but a symmetry on

the wavefunctions for physical states. Eqs. (5.32) and (5.30) are the major results in the

literature on 1/2 BPS states.
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5.3 Quantum Hall analogy and holography

In the above we have obtained the wavefunction (5.24) for half BPS quantum states. It

describes a many-body system of N particles, which we call G-particles. Here the name

G hints about two features of these particles: their origin in the gauge (color) degrees of

freedom (their number N being the rank of the gauge group U(N)) in SYM and their close

relation to geometry or gravity in the holographic dual (see below).

The simplest ground state with the wavefunction (5.24) corresponds to mi = 0 for

all i. It has the minimal angular momentum or R-charge N2/2. In this case, the wave-

function is nothing but the Laughlin wavefunction for a quantum Hall droplet with filling

factor ν = 1, an incompressible quantum fluid forming a circular disk. (For an intro-

duction of the QHE for particle physicists see, e.g., [28]; for that for string theorists see,

e.g., [13, 10].) The general states described by a wavefunction (5.23) represent planar fluid

composed of discontinuous components of the form of concentric rings. If the single par-

ticle states have larger enough angular momenta, they form a free 2D fermion gas in the

LLL.

Compared with Berenstein’s treatment, our R-ball approach has the advantage that

one can see clearly the origin of the emergence of “Landau levels”, on which the quantum

Hall analogy is based. Essentially this is due to the rotation (the time-dependent factor

exp(−it/R) in eq. (5.1)) of the R-balls that generates R-charge. By now it is well-known

that the rotation of a BEC will lead to the emergence of an effective magnetic field in

the co-moving frame and of the single-particle Landau levels [29]. Numerically it has been

shown that with small filling fractions, even fermionic QH-like states [30], including FQH-

like states [31], should appear in rotating BEC’s. Actually the LLL states (but not QHE

yet) in a rotating BEC has been seen experimentally [32]. What we have seen above in

the half BPS sector in SYM is essentially the same physics: An R-ball in N = 4 SYM

is nothing but a rotating BEC; and the small radius limit (R → 0 corresponds to rapidly

rotating BEC, which is indeed the lowest Landau level regime in the real atomic BEC

experiments.)

To understand the solutions (4.6) from the point of view of dual IIB superstring theory,

we claim that the G-particles satisfying Fermi statistics correspond to the LLM fermions

that are the “sources” of the half BPS geometry in a large N limit1 in the LLM’s con-

struction [4]. The state with minimal R-charge (for fixed N) is a circular droplet with

a uniform distribution of the LLM fermions, which is known to be the “source” of the

AdS5 × S5 geometry. The states whose R-charge are not far above N2/2 can be viewed

as a few G-particles excited a bit outside the droplet, corresponding to a few giant gravi-

ton excitations in AdS5. The general discontinuous fluid states of G-particles that form

concentric rings correspond to general LLM’s half BPS geometries seeded by concentric

ring-like distribution of LLM fermions. Finally, generically not every possible state of the

G-particle gas correspond to a classical geometry.

1If N is not large enough, in general we do not have classical geometry in dual string theory.
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6. Quantization of non-commutative 1/4 BPS sector

The success in the last section in making the connection of half BPS R-balls to the quan-

tum Hall effect meaningful substantially encourages us to proceed to examine the non-

commutative quarter BPS R-balls and to confirm the appearance of FQH-like states after

quantization.

6.1 Collective coordinate quantization

Similar to the half BPS case, we first try to quantize the classical R-balls (4.17) with

collective coordinate quantization. From the analysis of the moduli space in section 4, we

can parametrize this type of R-ball solutions in the following way:

Zα =
√

2θeiϕαaV
α , α = 1, 2, (6.1)

where aV
α = V †aαV contains the gauge degrees of freedom labeled by V in the coset

space SU(∞)/U(2) and ϕα are two independent phases. (Here we have absorbed a factor

exp(±it/R) into ϕ1,2 respectively.) Subsequently, the physical and dynamical degrees of

freedom are
√

θ, ϕα, which span a reduced moduli space R+ × U(1) × U(1) for the non-

commutative 1/4 BPS sector.

Now we measure the length in units of the radius R of S3; in the large N limit defined

in section 3, we introduce r := 2
√

c2, with c2 = N(N1 + N2)θ/R2. We also introduce the

following notions:
N2

N1
=

q

p
,

where p and q are nonnegative and coprime. Then the Lagrangian is given by

L =
ṙ2

2
+

r2

2

(

p

p + q
ϕ̇2

1 +
q

p + q
ϕ̇2

1

)

− r2

2
. (6.2)

Gauss’s law is reduced to

G := r2(ϕ̇1 + ϕ̇2) = 0. (6.3)

By the standard procedure, one obtains

H =
p2

r

2
+

1

2r2

(

p + q

p
J2

1 +
p + q

q
J2

2

)

+
r2

2
, (6.4)

Q = J1 − J2, (6.5)

G = (p + q)

(

J1

p
+

J2

q

)

(6.6)

where pr = ṙ, J1 = pr2ϕ̇1/(p + q) J2 = qr2ϕ̇2/(p + q).

Upon quantization, Jα = −i∂/∂ϕα → mα, (α = 1, 2), with mα integers. It is easy to

see the relation of Jα and the Schwinger representation of the u(2) algebra: L0 = J1 + J2,

L3 = J1 − J2. Then Gauss’s law dictates that

qm1 + pm2 = 0 ⇒ m1 = pk, m2 = −qk, (6.7)
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where k is an integer. Accordingly, in the physical subspace

H = − 1

2r

∂

∂r
r

∂

∂r
+

(p + q)2k2

2r2
+

r2

2
,

Q = (p + q)k. (6.8)

The eigenstates of the Hamiltonian in (6.8) of energy E are given by

Ψnk(r, ϕ1, ϕ2) = r(p+q)|k|e−r2/2F (−n, (p + q)|k| + 1, r2)eik(pϕ1−qϕ2) (6.9)

where F (., ., r2) is a confluent hypergeometric function and n = (E − 1 − (p + q)|k|)/2 =

0, 1, 2, . . .. Then the charge density and energy density are given by

Q = (p + q)k, E = (p + q)|k| + 2n + 1. (6.10)

Ignoring the zero-point energy from the ordering ambiguity of quantum operators, the BPS

states are those corresponding to n = 0.

Moreover, it is obvious that the system (6.8) can be mapped to a two-dimensional

harmonic oscillator in terms of the new variables:

ϕ =
pϕ1 − qϕ2

p + q
, z = reiϕ. (6.11)

Recall that p and q are coprime if and only if there are two integers s, t such that pt−qs = 1

(Bézout’s identity; it is easy to see that s, t are also coprime). Then the period of ϕ is

actually 2π/(p + q), corresponding to ϕ1 → ϕ1 + 2tπ, ϕ2 → ϕ2 + 2sπ. Consequently, the

two-dimensional harmonic oscillator is actually defined on a cone. The spectrum of E −Q

from (6.10) can be mapped to that of the Landau levels labelled by n with k = 0, 1, 2, . . .

labelling the degeneracy in the same Landau level (and n-th “anti-Landau level” for k =

0,−1,−2, . . .).

We know that an SL(2, Z) transformation changes a pair of coprime integers into

another coprime pair; and any coprime pair (p, q) can always be generated by acting an

element of SL(2, Z)
(

p s

q t

)

on a standard vector (1, 0)T . Since the coprime pair is determined by the ratio N1/N2,

the different choices for the coprime pair correspond to different large N sectors in N = 4

SYM, and SL(2, Z) transforms between different sectors with the same quantized k.

6.2 Canonical quantization

According to eq. (6.10), the quantum quarter BPS state obtained here contains essentially

one quantum number k, hinting that the (many-body) state is a rigid or incompressible

one. This picture is going to be checked in this subsection by applying another quantiza-

tion scheme. In contrast to the above quantization scheme, in which the classical Gauss’s
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law constraints except one are solved before quantization, now let us start from the clas-

sical solutions (4.11) with (4.17), treat aα(t) as dynamical variables and apply canonical

quantization to them, with the non-commutativity constraints

[aα(t), a†α(t)] = 2θ1Nα×Nα , (α = 1, 2), (6.12)

incorporated by Langrangian multipliers. This results in the effective Lagrangian (with

two matrix Lagrangian multipliers λα):

L =
N2

2R
Tr(ȧ1ȧ

†
1) +

N1

2R
Tr(ȧ2ȧ

†
2)

+
iN2

2R2
Tr(a1da†1 − da1a

†
1) −

iN1

2R2
Tr(a2da†2 − da2a

†
2)

+
2θN2

R2
Trλ1 −

2θN1

R2
Trλ2, (6.13)

where daα = ȧα − i[λα, aα]. The direct product structure of Zα(t) ensures that the com-

posite operators formed by Zα in SYM do not receive loop corrections to their conformal

dimensions. In the R → 0 limit we can drop the kinetic term in the Lagrangian (6.13), as

long as we focus on the ground states. Finally we end up with the effective matrix model:

L = L1 − L2,

L1 =
iN2

2R2
Tr(a1da†1 − da1a

†
1) +

2N2θ

R2
Trλ1

L2 =
iN1

2R2
Tr(da2a

†
2 − a2da†2) +

2N1θ

R2
Trλ2. (6.14)

We see that L1 or L2 is separately a NCCSMM model that has been discussed by Susskind

[10]:

L =
iξ

2R2
Tr(udu† − duu†) +

2ξθ

R2
Trλ, (6.15)

where ξ = N2 or N1, depending on whether u = a1 or u = a†2. This NCCSMM model has

a different origin, compared with the matrix model in ref. [14], where a chemical potential

µ was introduced in N = 4 SYM as an external parameter.

To quantize, we introduce the operators xij and yij through uij = xij + iyij , and

impose the canonical commutation relations:

[xij ,ymn] = i
R2

Nξ
δinδjm. (6.16)

Here we use the fact that N−1 plays the role of the Planck constant in a large N matrix

model. The non-commutative constraints are now imposed on the physical states:

(xijpjm − pijxjm)|Ψ〉 =
i

ν
δim|Ψ〉, (6.17)

where ν = R2/Nξθ and pij = ξyij/R
2.
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The left hand side of (6.17) resembles the angular momentum operator in quantum

mechanics, which generates a rotation of particles in a two-dimensional plane. We may

define a unitary operator to generate such a rotation:

T̂ = exp{ωim(xijpjm − pijxjm)}, (6.18)

with ωim the angles of rotation. As we consider the operation to exchange two particles,

i.e., to rotate them by an angle Trω = π, we have

T̂ |Ψ〉 = eiπ/ν |Ψ〉. (6.19)

This indicates that the many-body state |Ψ〉 is a QH state of fermions when 1/ν is odd, or

of bosons when 1/ν is even. So 1/ν is just the filling fraction of the QH system. The well-

known quantization of ν in the NCCSMM model implies θ = k/NξR2, with k a positive

integer.

Applying the above results to our matrix model (6.14), we have

ν−1
1 = k1 = NN2θ/R2,

ν−1
2 = k2 = NN1θ/R2,

}

⇒ k1 = qk, k2 = pk, (6.20)

where k is an integer, and (p, q) is again a coprime pair defined by the ratio N2/N1 = q/p.

Substituting the quantized θ into eq. (4.21), we obtain the quantized R-charge

Q = c2 = (p + q)k. (6.21)

It is the same as we obtained before from the collective coordinate quantization.

6.3 New higher dimensional quantum Hall state

In the above we have constructed mathematically a new quantum BPS state in N = 4

SYM, with energy equal to its R-charge. What is the physical interpretation of this state?

It is known that the NCCSMM model (6.15) describes a FQH system with filling fac-

tor ν = 1/k. So the ground state of our model (6.14) describes a quantum state that

is the product of the two FQH states, respectively, on two orthogonal non-commutative

planes. To get some ideas about what it looks like, we note that for the classical R-

ball solution (4.17), the constant matrices A1 and A2 are neither Hermitian nor nor-

mal. However, one may form two Hermitian matrices from them: Z1Z
†
1 = A1A

†
1 and

Z2Z
†
2 = A2A

†
2, which can be diagonalized simultaneously by a unitary rotation, since one

can easily verify [A1A
†
1, A2A

†
2] = 0. It is not hard to see that there are only N1 independent

eigenvalues of A1A
†
1, |a1,i|2, (i = 1, 2, . . . , N1), and N2 independent eigenvalues of A2A

†
2,

|a2,j |2, (j = 1, 2, . . . , N2). Upon quantization, |a1,i|2 and |a2,j |2 can be interpreted, respec-

tively, as the radial positions (squared) of G-particles in Z1- and Z2-plane. Here as in the

commutative half BPS case, we adopt the interpretation of matrix diagonal elements as co-

ordinates of particles, which we have named as G-particles, in the same spirit as the BFSS

matrix model [35]. Note that Z1 and Z2 are N -by-N matrices with N = N1N2, which is

just the number of G-particles. So the distribution of N G-particles in four-dimensional
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Figure 1: The distribution of N G-particles in (|a1|2, |a2|2) space. The lattice spacing is θ.

internal space thus forms a rectangular lattice with spacing θ in the two-dimensional plane

spanned by |a1|2 and |a2|2 (figure 1). Clearly there are N1 columns of G-particles (figure 1)

distributing along |a1|2 direction, and each of them has N2 rows of G-particles (figure 1)

along |a2|2-direction. Altogether there are N1N2 G-particles distributed on a four dimen-

sional space, that is the product of two circular disks, respectively, on non-commutative

Z1- and Z2-plane. Each column (or row) represents a quantum Hall droplet. So their

direct product represents a higher dimensional quantum Hall state in four dimensions. (It

is shown that the Landau Hamiltonian in flat space with even dimensions can be reduced

to the direct sum of two dimensional Landau Hamiltonians [34].)

What would be the holographic correspondence of the new 1/4 BPS states given by

eq. (6.10) or (6.21) in the IIB string dual? The above figure motivates us to suggest the

following picture: The G-particles, thought of as “sources” in IIB supergravity like LLM

particles in the LLM construction, form a four dimensional object: namely we have a bunch

(N2) of FQH droplets, each living on the Z1-plane, consisting of N1 G-particles and looking

like a point-like object on the Z2-plane; and the bunch of N2 point-like objects also form a

FQH droplet on the Z2-plane. This state is certainly not the FQH state of LLM fermions

that the present authors suggested in the IIB quantum gravity about a year ago [9], which

is known as a deformation of the 1/2 BPS IIB geometry to have null singularity. The

above picture for the states (6.10) immediately suggests themselves as a resolution of our

previously proposed FQH states of LLM fermions: Namely in the limit N1, N2 → ∞ with

fixed N2/N1 = q/p ¿ 0, the quantum states (6.10) become a candidate for the SYM dual of

the FQH states in IIB gravity suggested by us [9]. Indeed, we can present several evidences

for this suggestion:

• We may impose an extra condition, g2N2 ∼ fixed, According to the standard

AdS/CFT dictionary, the typical length scale along Z1-plane is ls(g
2N1)

1/4 À ls
with ls the stringy scale, while the typical scale along Z2 plane is ls(g

2N2)
1/4 ∼ ls.

Therefore, the classical geometry along Z1-plane is well-defined, and we can identify

this plane as the boundary plane of LLM geometries. Meanwhile, the classical ge-
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Figure 2: The semi-classical configuration of a four dimensional fractional quantum Hall state.

|Z2| denotes the radius in the transverse 2-plane.

ometry description along Z2-plane breaks down, and the quantum corrections play a

role at the string scale and resolve the original singularity.

• The angular momentum or R-charge contributed by Z1 and Z2 are proportional to

pkN2
1 and pkN1N2, respectively. The area occupied by a FQH droplet is proportional

to its angular momentum. Hence the typical size of the quantum states is N1R along

Z1-plane and
√

N1N2R along Z2-plane. If we take N1R ∼ fixed as a macroscopic

scale,
√

N1N2R → 0 will be a microscopic scale. Then the configuration (4.11) looks

like a thin pancake in internal four-dimensional space (figure 2), and the states looks

like a two-dimensional incompressible fluid (FQH fluid) macroscopically. The thin

thickness of such FQH fluid in the transverse directions can be understood as a

necessity for the resolution of null singularity in dual string theory.

• The Hamiltonian H or R-charge is a simple summation, H = H1 +H2, where H1 and

H2 denoted the contribution from Z1 and Z2 respectively. Since Q2/Q1 = q/p ¿ 0,

H2 can be treated as a perturbation. At the zeroth order, we have only H1, which

describes a 2d FQH system, as what we have suggested in ref. [9].

Of course, our result showed that this resolution actually breaks more supersymmetries.

Because N = 4 SYM is a well-defined quantum theory that is believed to contain complete

information on IIB superstring theory, our study suggests a possible way to deal with the

properties of the spacetime geometries near null singularities, or emergent geometry [37],

in terms of dual quantum field theory or its reductions to matrix models.

To conclude this subsection, we make two remarks: First, it would be interesting to see

whether a smooth IIB geometry could be generated by such “seeds” in the IIB supergravity

dual. We note that the solution (4.11) and the above quantization procedure preserve the

isometry group SO(2)×SO(2)×R. Second, the statistics we were talking about in the last

subsection is the statistics of N1 G-particles in one fixed FQH droplet on Z1-plane and the

statistics of the N2 FQH droplets as identical objects when two of them are exchanged on

Z2-plane. Because of the direct product structure of the total quantum state, interchanging

any two of N1N2 G-particles is not an admissible symmetry operation.
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7. Summary and discussions

A central issue for understanding AdS/CFT holography is to see how geometry or gravity

emerges in the CFT dual. In particular, one wants very much to see how the LLM fermions

in a quantum Hall droplet, that are known [4] to “encode” a wide class of half BPS IIB

geometries, arise in the dual gauge theory. In this paper we have proposed a new framework

for constructing quantum candidate states in N = 4 SYM on R×S3, which are promising

for holographically encoding classical or quantum geometries on the gravity side.

In our proposal, these candidates are quantized R-ball states, with energy saturated by

a conserved U(1) R-charge. They are constructed by quantization over the moduli space of

certain classical R-balls, which are spatially constant, time-dependent (rotating in internal

space) and maintain a fraction of supersymmetries. Many features of the Berenstein’s

matrix model for the commutative half BPS sector emerge naturally in our framework with

space-filling R-balls. In particular, the origin of the “magnetic field” in the QH analogy is

identified to be the rotation of the R-balls in internal space that generates R-charge, and

the origin of the projection down to the lowest Landau level is closely related to the BPS

bound (the energy is saturated by the R-charge). Quantization of such R-balls results in

a many-body quantum Hall system with filling factor ν = 1, whose constituents can be

identified with the LLM fermions. The system is a non-interacting one, whose constituents

are called G-particles with their number related to the rank N of the color gauge group.

Gauge invariance (the Gauss’s law) plays an important role in reducing the number of

physical degrees of freedom. In the half BPS case, this reduces the degrees of freedom in

the physical quantum states from N2 to N .

The success in making the QH analogy of the half BPS dynamics meaningful and

substantial encouraged us to look for FQH-like states in the quarter BPS sector. In our

framework, we have been able to shown that non-commutative almost BPS classical R-

balls are allowed in the large N limit, with two non-vanishing complex scalars. Upon

quantization they lead to a NCCSMM model that describe the “direct product” of two

QH droplets on a pair of orthogonal planes, each in ν = 1/k FQH states (k being an

integer). Thus the quantum states are those of an interacting many-body system, actually

a new four-dimensional QH system. In a special limit, the states reduces approximately

to the FQH states on a plane that correspond to the incompressible giant graviton fluid

(with density ρ = 1/k proposed by the present authors [9] previously in the dual gravity

theory). The latter was known to give rise to geometry with null singularities, and we

interpret the four dimensional new QH states obtained as representing a resolution of the

null singularities in the quantum theory of gravity. (Note that the d = 4 QH effect we have

here is not as the d = 4 QHE proposed previously in ref. [38, 39], which are not a direct

product of two Abelian QHE.)

We note that both the compactness of the space S3 and non-commutativity permitted

in the large N limit with N → ∞ play an essential role in admitting the existence of the

new (FQH-like) R-ball states. First, the conformal coupling term, that couples the scalars

to the spatial curvature, gives rise to a harmonic confining potential over the usual moduli

space of vacua in Minkowski spacetime. Second, S3 has a finite volume. Combining these
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two facts, it makes sense to consider space-filling R-balls with a rotation in internal space

generating an R-charge and to examine the small radius R → 0 limit. This limit allows

us not only to single out the lowest Kaluza-Klein modes, but also to project the R-balls

down to LLL. This is because with a particular rotation frequency, the centrifugal force

just cancels the harmonic confining potential, leading to the LLL (or BPS) states. Finally,

we found the existence of the non-commutative R-balls that, upon quantization, exhibit

FQH-like behavior and become BPS only in the large N limit, which is just the defining

limit for AdS/CFT holography. This suggests to us that non-commutative geometry should

play a profound role in studying the emergent gravity in the holographical CFT dual.

On the physics side, conceptually our study has heavily explored the analogy with

two recent inter-related developments (BEC and QHE) in many-body systems. This is not

surprising, since string/M theory essentially is a many-body system from the point of view

of the BFSS matrix model [35]. The present authors hold the belief that the string/M

theory has a profound connection with strongly correlated systems that are one of the

recent focuses of attention in quantum many-body physics. One important concept is that

of BEC, which plays a crucial role in the present context: the R-balls can be viewed as a

rotating BEC on S3 and what we have studied is the dynamics of a rapidly rotating BEC.

The rotating BEC is related to the QH effect for fermions, both integral and fractional,

at small boson filling fractions [31]. Previously a possible realization of the QHE in string

theory has been proposed in the literature [40], which involved particular configurations of

certain branes. Our present study suggests a more fundamental and ubiquitous connection

of string theory with the QHE in particular and with non-commutative geometry in general.
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A. N = 4 supersymmetry algebra on R × S3

By a straightforward calculation, the supersymmetry transformation (2.8) leads to the

following supercurrents:

J̄µ
L = − i

2
Tr(ψ̄Fρσ)γµγρσ − Tr{ψ̄(αiDνXi + iγ5β

jDνYj)}γµγν

+
1

2
εijkTr{ψ̄(αk[Xi,Xj ] + βk[Yi, Yj ])}γµ − iTr(ψ̄[Xi, Yj ])α

iβjγµγ5

− i

R
Tr{ψ̄(Xi + iγ5β

jYj)}γµγ5γ
0,

J̄µ
R = J̄µ

L +
2i

R
Tr{ψ̄(Xi + iγ5β

jYj)}γµγ5γ
0. (A.1)
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In a curved space with constant curvature, global supercharges associated to the above

supercurrents can be defined by appropriately projecting the locally-defined J̄0 to a global

section. To this end, we introduce the transformation

ζL = MLζL0, ζR = MRζR0, (A.2)

where the 4 × 4 matrices ML,R depend on spacetime coordinates and ζL0 and ζR0 are two

constant Majorana spinors. Then the global supercharges can defined with the help of ζL0

and ζR0:

Q̄L =

∫

S3

J̄0
LML, Q̄R =

∫

S3

J̄0
RMR. (A.3)

We take the metric of R × S3 to be

ds2
2 = dt2 − dθ2 − sin2 θ(dψ2 + sin2 ψdχ2).

Accordingly, the explicit solution of the conformal Killing spinor equation (2.5) is given

by [36, 16],

ε = e
it
2R

Γ0e
iθ
2R

Γ15e−
ψ

2R
Γ12e−

χ

2R
Γ23ε0, (A.4)

where ε0 is a constant spinor, and Γa denotes γ-matrices in the local Lorentzian frame of

AdS5. Eq. (A.4) together with eq. (2.7) lead to

ML = eit/Re−
iθ
2R

γ01e−
ψ
2R

γ12e−
χ
2R

γ23 ,

MR = e−it/Re
iθ
2R

γ01e−
ψ
2R

γ12e−
χ
2R

γ23 . (A.5)

Here γab, as we noted in section 2, are defined in the local Lorentzian frame on R × S3.

We will focus on the fermionic part of the superconformal algebra that involves only

the charges of R-ball configurations. In the A0 = 0 gauge the variation of the supercurrent

can be written as follows:

δLJ̄0
L = −2iT 0ν ζ̄Lγν − 2i

R
ζ̄Lγ0αiβjTr(XiẎj − ẊiYj)

+
2

R
εijkζ̄Lγ0γ5(α

kTrXiẊj + βkTrYiẎj) + · · · ,

δRJ̄0
R = −2iT 0ν ζ̄Rγν +

2i

R
ζ̄Rγ0αiβjTr(XiẎj − ẊiYj)

− 2

R
εijkζ̄Rγ0γ5(α

kTrXiẊj + βkTrYiẎj) + · · · , (A.6)

δLJ̄0
R = −2iT 0ν ζ̄Lγν +

2i

R2
ζ̄Lγ0Tr(X2

i + Y 2
j ) − 2

R
ζ̄Lγ0γ5Tr(XiẊi + Yj Ẏj) + · · · ,

δRJ̄0
L = −2iT 0ν ζ̄Rγν +

2i

R2
ζ̄Rγ0Tr(X2

i + Y 2
j ) +

2

R
ζ̄Rγ0γ5Tr(XiẊi + YjẎj) + · · · .

Here T µν is the energy-momentum tensor obtained from the SYM Lagrangian (2.1). The

· · · terms may involve scalars of higher degrees, such as

εijkζ̄γ5{αkβlTr([Xi, Yl]Xj) + iγ5α
lβkTr([Xl, Yi]Yj)}. (A.7)
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We have checked that for the R-balls we obtained in the text, whether commutative or not,

the terms presented in (A.6) are the only non-vanishing ones. For example, it is easy to

verify that the terms in (A.7) vanishes for both 1/2 and 1/4 BPS R-ball solutions obtained

in the text.

We introduce the following “matrix charges”:

PL,R =

∫

S3

γ0M †
L,Rγ0γνML,RT 0ν = P a

L,RΓa + Sa
L,RΓaΓ5,

K =

∫

S3

γ0M †
Lγ0

[

γνT 0ν − 1

R2
γ0Tr(X2

i + Y 2
j )

]

MR, (A.8)

and the “angular momenta”:

Lij =
1

R

∫

S3

M †
L,RML,RTr(XiẎj − ẊiYj) =

1

R

∫

S3

Tr(XiẎj − ẊiYj),

Lk
X =

1

R
εijk

∫

S3

γ5M
†
L,Rγ5ML,RTrXiẊj =

1

R
εijk

∫

S3

TrXiẊj ,

Lk
Y =

1

R
εijk

∫

S3

γ5M
†
L,Rγ5ML,RTrYiẎj =

1

R
εijk

∫

S3

TrYiẎj . (A.9)

Then with δO = −i{ζ̄0Q,O}, the superconformal algebra can be written symbolically as

{QL, Q̄L} = 2PL + 2Lijα
iβjγ0 + 2iγ0γ5(α

kLk
X + βkLk

Y ) + · · · ,
{QR, Q̄R} = 2PR − 2Lijα

iβjγ0 − 2iγ0γ5(α
kLk

X + βkLk
Y ) + · · · ,

{QL, Q̄R} = 2K + · · · , {QR, Q̄L} = 2K† + · · · . (A.10)

Here we have presented only terms that are relevant in this paper. The emergence of γ0 in

the terms involving “angular momenta” indicates that L’s are not central charges. Because

matrices α, β generate a rotation among indices of SU(4) R-symmetry group, these L’s

are actually associated with the R-charges. We may introduce fermionic charges Q and S

by QL = Q + S, QR = Q − S. Then schematically the algebra (A.10) can be rewritten as

{Q, Q̄} = PL + PR + (K + K†) + · · · , {S, S̄} = PL + PR − (K + K†) + · · · ,
{Q, S̄} = (K − K†) + 2L + · · · , {S, Q̄} = −(K − K†) + 2L + · · · . (A.11)

As the radius R of S3 goes to infinity, we have PL,R,K,K† → /p with p the four mo-

mentum in four-dimensional Minkowski spacetime, M4. Therefore, the superconformal

algebra (A.11) reduces to the standard form in M4.

The general expression for the BPS bound can be obtained by computing the eigen-

values of the right-hand side of the algebra (A.10), but the computation would be very

tedious due to the presence of many off-diagonal elements. Here we only focus on the BPS

bound for the supersymmetric configurations found in the text. It is not hard to see that

we always have K = 0 for these backgrounds. For the commutative half BPS R-balls, with

only one pair of scalar and pseudo-scalar turned on, we have LX = LY = 0. Meanwhile,

for our non-commutative R-balls, LX , LY ∝ Tr(a1 × a2) = 0 by using (4.18). Notice
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that T 0i = 0 for these configurations. Computing the eigenvalues on the right side of the

superconformal algebra (A.10), we obtain the BPS bound for energy:

E ≥ |L|, (A.12)

where the angular momentum L is nothing but just R-charge Qr defined in eq, (3.3).

For commutative half BPS R-balls, this BPS bound is exactly saturated, while for the

non-commutative 1/4 BPS R-balls, their energy receives an extra contribution from the

tree-level quartic interactions, which is of order λ/N(N1 + N2) and can be ignored in the

limit N → ∞.
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